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The electrochemical growth of  small clusters at constant  external voltage has been studied theoreti- 
cally. Expressions are derived here for the time dependence of  the cluster size and the growth current 
accounting for the ohmic drop in the electrolyte. The potential distribution around, the growing 
clusters is determined and the kinetics of  spread of  the zones of  reduced overpotential  are investigated. 

1. Introduction 

The electrochemical growth of microclusters has been 
extensively studied both experimentally and from 
a theoretical point of view [l-12]. Various growth 
mechanisms have been considered and theoretical 
expressions have been derived for the current-time 
relationship assuming different rate determining steps 
of the growth process. Thus it has been found that the 
ion transfer across the electrical double layer limits the 
growth of small clusters at short times whereas, for 
sufficiently large clusters, mass transport becomes the 
rate determining step. Mixed kinetics have also been 
considered [I 1]. 

It is the aim of this study to supplement the theory 
by accounting for the electrochemical ohmic drop 
which modifies the local electric field around the grow- 
ing stable clusters. As is known the effect of the ohmic 
drop is often neglected for small clusters and therefore 
it is important to know up to what cluster size such an 
approximation is justified. 

In this paper we consider the growth kinetics in 
concentrated well stirred solutions, in the absence of 
supporting electrolyte. Under such conditions the 
concentration of the electroactive species close to the 
growing clusters is almost equal to their bulk concen- 
tration and the concentration polarization is negli- 
gibly small. We consider this particular case for two 
reasons: first, to illustrate the pure effect of the ohmic 
drop on the ion transfer kinetics and, secondly, because 
the above mentioned conditions are close to the depo- 
sition conditions of corrosion-protective galvanic 
coatings. 

2. Theory 

2.1. Basic kinetic equations 
The thermodynamic driving force for ion transfer 
across the electrical double layer is the electrochemical 
supersaturation A/~ 

A# = zeal 

In this expression z is the valency of the depositing 
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ions, e is the elementary electric charge and r/is the 
overpotential. The quantity A# determines the rate of 
the interfacial ion transfer reaction and enters the 
general theoretical expressions for the cathodic (Io) 
and the anodic ([~) current densities 

It = i0exp ~ (1) 

I, = i0expf  (1 - g ) z e r / ]  3~  (2) 

(Here, and throughout the paper, we define Ic and r/as 
positive quantities.) In Equations 1 and 2, i0 is the 
exchange current density (the crystal surface is con- 
sidered as homogeneous with respect to the ion tran- 
sfer process), ~ is the transfer coefficient and the other 
symbols have their usual meanings. 

An essential problem in all experimental studies of 
electrochemical phase formation is the control and 
measurement of the overpotential, ~7. The main dif- 
ficulty is because even in the case of growth at a fixed 
external voltage, AE, the actual overpotential at the 
cluster-solution interface may be not a constant but a 
time-dependent quantity. To make this point clear let 
us consider a two-electrode electrochemical cell com- 
prising an electrolytic solution of metal ions, an inert 
ideally polarizable working electrode and an ideally 
non-polarizable counter electrode made of the metal 
whose ions are present in the solution. When applying 
an external voltage, AE, to the electrodes of such an 
electrochemical cell the process that proceeds first is 
the charging of the electrical double layer. During this 
process the electrochemical overpotentiai, q, is a func- 
tion of time and changes according to 

r/(t) = AE [1 - exp ( -  t/{)C)] (3) 

where C is the double layer capacitance and f~ is the 
ohmic resistance of the electrolyte, which depends on 
the geometry of the electrolytic cell. Equation 3 shows 
that after time t ~ 5 f~C the double layer is almost 
fully charged and r/ becomes equal to the external 
voltage AE. 

The appearance of a single growing cluster of the 
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new phase on the electrode surface is equivalent to a 
local breakdown of the double layer condenser and 
causes a partial decrease of the overpotential, q. Thus, 
at the cluster surface the overpotential becomes 

qr = A E -  iRa,~ (4) 

where r is the cluster size, i is the growth current and 
Rn,~ is the individual ohmic resistance of the circuit 
'counter electrode-electrolyte-r-sized growing clus- 
ter'. (The Gibbs-Thomson effect of the curvature 
[7, 13, 14] is neglected in these considerations. An 
expression similar to Equation 4 is used in [29].) It is 
now q~ that ensures the ion transfer across the double 
layer to the cluster surface and, therefore, bearing in 
mind Equations 1 and 2 for the net growth current of 
the single cluster we obtain 

= s, io ~exp[ ~zen~] [ 
i L kT J - exp L 

(5) 
where Sr is the cluster surface area. To obtain the 
explicit i-r relationship, it is first necessary to define 
the quantities Sr and Rn,r. For the sake of simplicity in 
the following we consider cap-shaped clusters formed 
on a flat working electrode (Fig. 1), 7 being the contact 
angle betwen the cluster and the substrate. In this case 
Sr = 4rer2~(7), where ~(7) = 1( 1 - cos y). Ra,, is not 
easy to find in the case of an arbitrary contact angle 7. 
However, for hemispherical clusters (7 = 90~ a sol- 
ution can be obtained in the following way [2]. 

The ohmic resistance of the elctrolyte between two 
imaginary hemispheres with radii x' and x' + dx' 
(Fig. 2) is 

1 dx' 
dR - ke 2rex,2 (6) 

where ke is the specific solution conductivity. Hence 
the ohmic resistance of the electrolyte between the 
r-sized cluster and a hemisphere with an arbitrary 
radius x is 

R(x) = f ; -  1 -  (7) 

Therefore, if the distance between the cluster and the 
counter electrode is x = L >> r for the total ohmic 
resistance of the circuit 'counter electrode-electrolyte- 
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Fig. 1. Cap-shaped cluster of radius r and wetting angle 7. 

r-sized cluster' one obtains 

1 ( i )  1 
Ra,r = 2rcker 1 - ~ 2rck er (8) 

For the case of an arbitrary contact angle, 7, the 
ohmic resistance can be approximately determined 
from Equation 7 if the integration is performed from 
an effective radius refr = f r  [6]. Thus for R(x) and Rn,r 

' CI ) R(x) 2nfk~r (7') 

Rn,r - 27zfke r 1 - ~ 2rcfke r (8') 

where the dimensionless constant f is introduced to 
account for the complicated symmetry of the electric 
field arising around an arbitrary cap-shaped cluster of 
the new phase. As is seen from Equations 7' and 8' the 
correction appears in the form of an effective conduc- 
tivityfke, different from the actual specific conductivity 
of the electrolytic solution. It is worth noting that, 
according to Lorenz [15], k~ must also be corrected in 
a similar way in the case of hemispherical clusters to 
take into account the increased surface conductivity of 
the electrolyte due to the higher concentration of 
metal ions in the region of the electrical double layer. 
All this means that the constant f has a rather com- 
plicated physical meaning and should be empirically 
determined in each particular experimental system. 

Equations 7 and 7' give the ohmic resistance R(x) as 
a function of the distance x from the growing cluster 
and show that almost 90% of the total ohmic resist- 
ance Rn,r is concentrated in a layer with a thickness of 
about 10 cluster radii. Indeed for x = 10r it follows 
from Equations 7 and 8 that R(x) = 0.9 Rn, r. This 
means that it is worth using a three-electrode system 
for decreasing the ohmic drop only if the tip of the 
Luggin capillary can be fixed to the growing cluster 
surface at a distance shorter than 10 times the cluster 
radius. Certainly this is impossible for clusters of size 
r < 10 .3 cm. For such clusters the effect of the 
ohmic drop should be either neglected or accounted 
for theoretically. 

Returning to Equation 5 and substituting t/r by 
(AE - i/2~fker) and Sr by 4zcr2O(7), we obtain 

i =  4rer2O(7)i~ {exp F ~Ze ( kT  2797ker)]i 

- e x p [  ( 1 - c O z e (  A E k T  2 ~ r ) l }  

(9) 
A different way of expressing the current i is to 
use Faraday's law, which gives the mass balance of 
the depositing species independently of the growth 
mechanism 

ze dV(t) 4~ze~b(y) r2 dr 
i -- -- - -  (10) 

V m dt v m dt 

Here V(t) is the volume of the cap-shaped clusters at 
time t, Vm is the volume of one atom of the deposit and 
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~b(7 ) = �88 + cos 7)(1 - cos 7) 2 . Equations 9 and 
l0 give the basic kinetic equation describing the elec- 
trochemical growth of a single cap-shaped cluster at a 
constant external voltage AE 

dr ( d r )  ( d r )  
dt P lexp - P2r-~ + P3 exp P4 r -~  = 0 

(11) 
In Equation 11 the constants P~, P2, P3 and P4 read 

0(7) v~,io exp { ezeAE) 

20~(ze)Z ~b(7) P 2 =  
fk~v~kT 

- exp ( (1 -  )zeAE) 
c~(?)ze k T J 

2(1 - ~)(ze)2~(~) 
5 =  

jqCe Vm k T 

An exact analytical solution of Equation 11 as not 
possible, but a numerical evaluation of the r(t) and i(t) 
relationships can be carried out as follows: 

(i) Using a 'zeros of function' program dr/dt is 
:l'ound as a function of  r from Equation 11. 

(ii) The plot of (dr/dt) -1 against r is numerically 
integrated to give the t(r) (i.e. the r(t)) relationship. 

(iii) Having r(t) and dr/dt, fit) is found from 
]Equation 10. 

The exact r(t) and fit) plots obtained in this way are 
given by circles in Figs 3 and 4 for Vm ----- 1.7l X 
]0-23cm3 (10.28cm3mol-I), i0 = 10Acre -2, ~ = 
0.8, z = 1, k e = 0.2~2 - I c m  -~, T =  308K, f =  1, 
AE = 0.1V, 7 = 90~ (r = 4)(7) = 0.5). (These 
values correspond to electrodeposition of silver from 

Fig. 2. Definition of  the ohmic resistance of  the elec- 
trolyte around a hemispherical cluster. 

5 M AgNO3 and are used in all numerical estimates 
carried out in this paper.) For comparison lines 1 in 
the insets (a) in Figs 3 and 4 represent the theoretical 
expressions for r(t) and i(t) obtained without taking 
into account the ohmic drop, that is, not introducing 
the term i/2rckefr in Equation 9. In this case 

- { F zeAE  0(7) vmio exp 
r 4( )ze L J 

kT L (12) 

i - 4 r a f t 3 ( ? ) 2 . 3 {  I~zeAE1 
(ze)202(7)vmzo exp --~--f-j  

F (1 -- ~)zeAE]~3t z 
e x p  

L 
(13) 

Equations 12 and 13 describe the r(t) and i(t) tran- 
sients in the very initial stage when the interracial ion 
transfer reaction is the only rate determining step. It is 
seen from Figs 3 and 4, however, that even for very 
small clusters the ohmic drop causes a significant 
decrease of the growth current. 

In the following we derive analytical expressions for 
r(t) and i(t) accounting for the ohmic drop at short 
and long times, respectively. 

2.1.1. Short times, low ohmic drop. In this case we 
rewrite Equation 9 in the form 

i = 41rr20(?)i0 exPL k r  ] e x p  2~zflc, kT 

_ e x p l  - (1 - ~)_)_zeAE 1 [(1 -- ooze i] 
kT j exp L 2~ok- - f  r JJ  

(9') 
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and express the exponents containing the ratio i/r 
through the first two terms of the Maclaurin expansion 

[ c~ze ~] eze i (14) 
exp 2rcfkekT ~ 1 2rcfk~kT r 

expI(1 - c 0 z e ~ J  ( l - ~ ) z e i  1 + (15) 
27tfkek T 2rcfk~k Tr 

This is a good approximation for (c~ze/2zcfkekT) 
(i/r) < 0.1. Thus Equation 9' simplifies to 

i = 4~r20(7)AkTfk~i~ (16) 
fkekT + 20(7)zeBior 

where 
~ezeAE] _ [ (1 - ~)zeAE] 

A = exp L kT J exp _ k-T J 

~zeAE] 
B = exp k--k- l 

1 - c0 ex p [  (1 -~c0zeAEj] + ( 

Combining Equations 10 and 16 yields 

dr vmAfkekTio 0(7) 
dt zefkekT + 20(7)(ze)2Bior (0(7) 

(17) 
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which with initial conditions t = 0, 
solved to 

r - 20(7)zeioB | 

r(O) = 0, is 

+ 4VmigAnr _ 11 
f k r162  t)  1/2 

(18) 

Correspondingly, for the current i from Equations 18 
and 10 (or 16), we obtain 

i - /'0~(7)\ zeB J 

[ 1 +  [2VmigO2(7)ABt/cf(7)fkekT] __ !]  
• {1 + [4Vmig~2(y)ABt/O(7)fkekT]} ~/2 

(19) 

Equations 18 and 19 are represented by lines 2 in the 
insets (a) in Figs 3 and 4 and appear to be good 
approximations to the exact solutions for short times 
when ilr < 0.1 x 2~fkekT/c~ze. As for Equations 12 
and 13 they can be used with a good accuracy if 
iRa f lAE  < 10 -3. 

2.1.2. Long times, high ohmic drop. At long times the 
external voltage AE is almost entirely transformed 
into an ohmic drop and q~ becomes low enough to 
justify the Maclaurin expansion of the exponents in 

[ ~ze (AE 
exp L k T  

o~ze ( 
l + ~-f AE 

Equation 9 

exp I (1 - a)ze ( 

,-~ I ( 1  - ~)ze ( 

Thus Equation 9 simplifies to 

i 

i ) (20) 
27rf"k~ r 

i ) (21) 
2x]7% r 

4rcr2 O(7)JkoiozeAE 
i = (22) 

. fkekT + 2~(7)zeior 

which, combined with Equation 10 yields 

dr VmfkeioAE 0(7) 
- ( 2 3 )  

dt fkokr  + 24,(7)zeior 4)(7) 

With initial conditions t = 0, r(0) = 0, the last dif- 
ferential equation is solved to give 

4%tozetp.(7)A E l/2 
r - 2O(y)zei ~ 1 + fk~(kT)20(y ) t - 1 

(24) 

Correspondingly, for the current i from Equations 24 
and 10 (or 22) we obtain 

to the exact solutions for long times when i/r > 
2zrfk, (AE - 0.1 kT/~ze). 

Finally, lines 1 in the insets (b) in Figs 3 and 4 
represent the limiting case of complete ohmic control 
of the growth process [2] when the whole external 
voltage AE is transformed into an ohmic drop (t b = 0) 

i 
AE = (26) 

2zcfk~r 

In this case combining Equations 26 and 10 and solv- 
ing the differential equation with initial conditions 
t = 0, r(0) = 0 yields [2] 

r = [fk~%AE/zeO(7)li/2t 1/2 (27) 

= 2zc(fk~AE)Sl2[v~lzeO(7)l~12t '/2 (28) 

The expressions 27 and 28 follow also from Equations 
24 and 25 for sufficiently long times when [%i~ze~2(7) 
AEtljked2(7)(kT) 2] >> I. 

2.2. Interpretation o f  the experimental results 

The previous considerations illustrate the influence of 
the ohmic drop on the r(t) and i(t) behaviour of a small 
cap-shaped cluster of the new phase. As is seen from 
Fig. 4 characteristic feature of the current transient is 
its inflection point appearing at time t = tr (i = if) as 
a result of the gradual transition from the i-t 2 time law 
(complete "ion transfer control" Equation 13) to the 
i-t 1/2 time law (complete 'ohmic' control, Equation 28). 
As mentioned in the previous section an exact analytical 
expression for the i(t) relationship cannot be obtained 
and this makes the direct quantitative interpretation 
of an experimental current transient impossible. How- 
ever, information about the kinetic parameters of the 
growth process can be derived from the approximate 
solutions for i(t), valid at short and long times respect- 
ively (Equations 19 and 25). 

Applying the condition for inflection [d 2i/dt2],=,f = 0 
to Equation 19 for the coordinates of the inflection 
point one obtains 

f k~k  Tr 
tr, s = 2Vmi{O2(7)AB (29) 

2 -  3 !/2 2zcA ( f k ~ k T V  
Zf's - 31/2 io~/(7 ) \ zeB ) 

i 

/ t (29') 

whereas from Equation 25 we obtain 

fk~ (kT)24,(7) 
= .~ 2 (30) tm 2v~ l~ ~ (7)zeAE 

2 - 31/2 2n(fk~)2kTAE 
i m = 3112 ~b(7)ioz e (30') 

These two sets of kinetic formulae can be used to 
evaluate i0 andfkc approximately from the coordinates 
of the inflection point of an experimental current 

i -- ~(7)zeio {1 + [4Vmi~2(7)zeAEtlfb(7)fke(kT)2]} '12 

Equation 24 and 25 are represented by lines 2 in the transient if the wetting angle, 7, is known. In order 
insets (b) in Figs 3 and 4 and are good approximations to indicate the accuracy of such an estimate let us 
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assume that the exact i(t) plot (the circles in Fig. 4) 
is an experimental transient with inflection at time 
tf = 5.51 • 10 3s (if = 2.28 • 10-6A). Then 
Equations 29 and 29' give i0 = 7 .6Acm -2 andfko = 
0.41 f~ -t cm -t ,  whereas Equations 30 and 30' give 
i0 = 27.4Acm -2 and fk~ - 0 .1t f~-~cm -t. These 
values of.lk~ and i0 do not differ dramatically from the 
true values ( fk ,  = 0.2f~ -~ cm -~ and i0 = 10Acre  2) 
used to obtain the exact i(t) plot given in Fig. 4. 
However, if a more accurate estimate is needed an 
appropriate choice between the two sets of formulae 
for if and tr (Equations 29, 29' and 30, 30') should be 
made by checking which of the two inequalities 

if - < 0.1 x 2xfkekT/c~ze (short-time approximation) 
rf 

or 

if 
- > 27zfke(AE - O.lkT/c~ze) 
rf 

(long-time approximation) 

holds for the experimental inflection point. For this 
purpose it is also necessary to find the radius rr of the 
cluster at time t = tf. This can be easily done by 
integrating the experimental current transient and 
determining the r(t) relationship according to Far- 
aday's law (Eauation 10~ 

r(t) = [ [L i(o d,] (31) 
L 4zze~b(7) -~ 

Of course, having data for i(t) and r(t), a direct inter- 
pretation is also possible on the basis of the general 
Equation 8 presented in the form i/r ~ = F(i/r). Using 
a 'best fit' procedure one can determine i0, f and 0(7) 
at given e, T and k~. 

Finally, let us consider two experimental current 
transients corresponding to the growth of hemispheri- 
cal (e = 90 ~ qS(7) = 0(7) = 0.5) silver and lead single 
crystals from 5 M AgNO 3 and 0.5 M Pb(NO3) 2 respect- 
ively (Fig, 5a and b) [2]. The other parameters for 
these experiments are AE = 0.01 V, T = 3IOK and 
ke = 0 .21f~- lcm -1 for silver and AE = 0.004V, 
T = 295 K and ke = 0.058 f~-J cm-~ for lead electro- 
deposition. Integrating the current transients and cal- 
culating the cluster radius according to Equation 31 
for the ratios i/r give 

i 
- ~> 1.31 x 10-2Acm 1 for t >~ 25s (silver) 
r 

i 
- >~ 1.55 • 1 0  - 3  A cm  ~ for t >~ 120s (lead) 
r 

In both cases this justifies the use of the long-time 
approximation (Equation 25) for interpretation of the 
experimental results. The i against t 1/~ plots given in 
Figs 6a and b show that at long times the data satisfy 
a linear relationship of the type 

i = a t  1/2 4- b (32) 

wherea = 1.06 x 10-SAs-l/Z,b = - 2 , 5  x 10-SA 
for silver and a = 4 x 10-7As -I/2, b = 1.8 • 
10-6A for lead electrodeposition, It can readily be 
shown that such a current-time law follows directly 
from Equation 25 if two inequalities are simultaneously 
fulfilled 

2Vr~i~zeAg02(7) 
fke(kT)2c~(7 ) t >~ 10 (33) 

[Vmi2zeAE~12(7) ]1/2 
2fke(kT)2~b(7) r < 10 (33') 
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In this case for the time interval At = 190fke(kT)20(7)/ 
Vm i2zeAEO2(7), Equation 25 simplifies to 

i =  27r(fkeAE)3/2[Vm/Ze~)(T)]|/2 tU2 

- 2zc( fkJkTAE/O(y) ioze  (34) 

which allows calculation offke from the slope and i0 
from the intercept of  an experimental i against t v2 
transient. In the cases under consideration the values 
obtained are fk~ = 0.24f~ -~ cm -~, i0 = 7 .6 Acm 2 
for silver andfk~ = 0.069s -~ cm -~, i 0 = 1 .7Acm -2 
for lead electrodeposition. Of  course, it should not 
be forgotten that, for crystalline clusters, each crys- 
tallographic face is characterized by a different 
exchange current density. Therefore the above values 

of  i0 have to be considered as mean values reflecting 
the specific crystallographic relief o f  the silver and the 
lead single crystals at the given experimental conditions. 

An important  point in the theoretical interprel~ation 
of the experimental results is the determination of the 
c o n s t a n t f  In the above cases the comparison between 
the product f k  e and the corresponding bulk conduc- 
tivities k~ yields f = 1.14 for silver and f = 1.19 
for lead electrodeposition. This means that for hemi- 
spherical clustersf is  probably rather close to unity. In 
the case of  an arbitrary contact angle (7 -r 90~ how- 
ever, f h a s  to be experimentally determined by study- 
ing the growth kinetics at long times and interpreting 
the r(t) and i(t) transients by means of Equations 27 
and 28. Knowing the values of  7 and k e , f c a n  readily 

L~ 

L 

0.6 og 
o o 

o% 

O.Z, 

0.2 

1.0 

% 
0.9 % 

o 
o 

o 
0 8 ~ ~ 

0.7 t i _i 
2 

0.3 

0.2 

0.1 0 o 

~ ~ 1 7 6  o Oo o o 

i ~ 1 7 6  
tx10~ (s) 0 I+0 2'0 3fO 

(b) 

0 0 0 0 0  0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

o o 

t(S) 

0'1 62 d3 ' 64 ds t/s  

Fig. 7. Dimensionless plot of qflAE 
against t calculated according to Equation 
35 with the exact r(t) and fit) relationships 
(circles in Figs 3 and 4 respeclively). 
Insets (a) and (b) - short and long times 
respectively. 
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be found f rom the slope o f  the r against t ~/2 (or i 
against t 1/2) experimental plot. 

2.3. Zones of  reduced overpotential 

As pointed out  at the beginning of  this study the 
appearance o f  a growing cluster on  the electrode sur- 
face leads to a local decrease in the overpotential ,  ~, 
and modifies the electric field in the cluster vicinity. 
We have already seen that  at the cluster surface (at a 
distance x = r, Fig. 2) the overpotential  o f  the double 
layer is 

~r = A E -  iRn,r = AE 1 - 27zfkerA E (35) 

where Ra.r = 1/2xfker is the total ohmic resistance o f  
the circuit 'counter  electrode-electrolyte-r-sized grow- 
ing cluster '  and the current i is given by Equat ions  9 
or 10. Knowing  the r(t) and the i(l) relationships 
(Figs 3 and 4) Equat ion  35 allows calculation o f  the 
time dependence o f  the overpotential  at the cluster 
surface. The latter is given in Fig. 7 in dimensionless 
units rb/AE against t. 

An  impor tan t  problem in electrochemical phase 
format ion  is the determinat ion o f  the overpotential  
distribution a round  a growing stable cluster. This 
involved determining the overpotential  as a function 
o f  the distance x f rom the cluster surface. To achieve 
this it is necessary to take into account ,  not  the total 
ohmic drop,  iRa,r, but  only that  par t  o f  it due to the 
ohmic resistance R o o f  the electrolyte between the 
counter  electrode and the imaginary hemisphere o f  
radius ~ (Fig. 2). Since R~ is given by 

;2 dx'  (36) 
R o = 2rckex '2 

the resulting expression for t/0 is 

i )  dx '  (37) t/0 = A E -  i ~ 2~zkex,2 

Therefore,  assuming that  the counter  electrode is infi- 
nitely large and infinitely distant (L > Q), one finally 

/ 

r/~ = AE 2~zfke r 

i 

obtains 

(38) 

It is seen f rom this expression that, for  ~ = r, the 
overpotential  t/o equals qv (Equat ion 35) whereas for 

~ o% that  is, at sufficiently long distance f rom the 
cluster, t/0 attains the value o f  the external voltage AE. 

Figure 8 shows the cross section o f  six overpotential  
profiles drawn on the basis o f  Equat ion  38. Each 
profile relates to a different time t, that  is, to a different 
current  i(t) and cluster radius r(t). The length o f  the 
horizontal  par t  o f  each profile equals the cluster dia- 
meter, whereas its ordinate gives the ratio qo/AE at the 
cluster surface (Q = r). Combining  Equat ions  35 and 
38 yields 

= + 2-- e ; - 

which directly illustrates the interrelation between the 
overpotentials t/~ and qr" Making  use o f  Equat ion  38 
one can also determine the radius Q o f  the zone o f  
reduced overpotential  

i 
(40) 

0 = 2 ~ f k , ( A E -  r/~) 
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in which t/varies from t/? at the cluster surface to ~/~ 
at the zone periphery. Putting qo equal to the 'criti- 
cal' nucleation overpotential, q~, one obtains from 
Equation 40 the radius 9~ of the so called 'nucleation 
exclusion zone' in which no nuclei form under given 
experimental conditions. However, the critical over- 
potential q~ is not a thermodynammic quantity. It is 
defined as the overpotential at which the nucleation 
rate equals one nucleus per unit time and depends on 
the properties of  the particular experimental system. 
Equation 40 shows that, apart from the constant fac- 
tor [2zcfke(AE -- q0)] -~, the time dependence of  the 
zone radius 0 coincides with the time dependence of  
the growth current i (Fig. 4). However, one should 
bear in mind that Equation 40 only holds for values of  
% greater than, or equal to t/~ and the zone radius 

is in all cases greater than, or equal to, the clus- 
ter radius r. The interrelation between ~ and r is 
revealed by substituting Faraday's law (Equation 10) 
into Equation 40. The result obtained is 

2ze~p(?) r2 dr (41) 
Q = v m f k o ( 6 E -  ~o) dZ 

Only in the limiting case of complete ohmic control of 
the growth of  hemispherical clusters from Equations 
26 and 40 can one obtain the simple formula suggested 
by Markov et al. [6] 

AE 
Q = - -  r (42) 

A E -  r/~ 

Rearrangement of  Equation 42 yields 

which gives the overpotential profile arising around a 

growing macrocluster after a sufficiently long time 
when the external voltage is entirely compensated by 
the ohmic drop. In this case, for the cluster surface 
(Q = r), Equation 42' gives qe/AE = 0. However, a 
numerical estimate based on the exact formulae of 
Equations 10, 11 and 35 shows that ~/g differs from 
zero even for rather long times. Thus q~o/AE = 0.05 at 
t = 3 0 s ( r  = 1.08 x 10-2cm, i =  1.30 x 10-3A). 
In fact these values of  t, r and i may be considered as 
lower limits for the validity of  the theoretical formulae 
derived for the case of complete ohmic control of 
the growth process (Equations 27, 28, 42 and 42'). 
Of course, the estimate relates to the particular numeri- 
cal values of the physical quantities used in this 
study. 

The profile 3 in Fig. 9 represents Equation 42' in 
dimensionless coordinates q~/AE against ~/r. For  
comparison profiles 1 and 2 represent the exact sol- 
ution (Equation 38) for clusters of sizes r = 5 x 
10 5 cm and r = 6 x 10 -4 cm respectively. (Profiles 
1 and 2 in Fig. 9 correspond to profiles 1 and 4 in 
Fig. 8.) As is seen from Fig. 9, the simple foi~ulae  
Equations 42 and 42' do not provide a satisfactory 
description of  the overpotential distribution at short 
times when the nucleation phenomena normally take 
place. For  example, for r = 5 x 10 -5 cm the exact 
solution (line t, Fig. 9) shows that the overpotential, 
t/0, attains the value 0.95AE at a distance ~o =: 5r, 
whereas Equation 42' predicts qe = 0.95 zXE at ~ = 
20r. The corresponding zone surface area, S~ = nQ 2, 
are 25nr z and 400z~r 2, respectively. This means that 
misleading information would be obtained if nucleation 
experiments are interpreted by assuming that the clus- 
ters grow under the conditions of complete 'ohmic' 
control from the very beginning of the deposition 
process. Of course, if the zones of reduced overpoten- 
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tial are totally neglected wrong results would also be 
obtained. 

An important characteristic of the zones of reduced 
overpotential is their rate of  spread. Two quantities 
can, in principle, be defined: the growth rate of the 
zone radius, v o = dQ/dt, and the growth rate of the 
zone surface area, V~ = dSJd t .  The connection 
between re, V~ and the corresponding cluster growth 
rates, % and Vr, is found by means of Equation 41 

2ze~b(7) (2rv~ + r 2 d% ) (43) 
: -- a t  J 

(44) 

The time dependence of the quantity v~ is given by 
triangles in Fig. 10. As is seen it has a non-zero initial 
value corresponding to the case of  complete 'ion tran- 
sfer' control (Equation 12) 

dr t~(y) v~io exp 
Vo -- d-~ :o = zeq~(7--~ L---k-T-A 

- e x p [  ( 1 - k ) z e A E ] }  (45) 

and tends to zero at long times when the clusters grow 
under the conditions of complete 'ohmic' control 
(Equation 27) 

%o = = [fk~ vmAE/4ze4)(3,) ],/2 t-I/2 

(46) 

The open and solid circles in Fig. 10 represent the time 
dependence of the rate, %, of spread of two zones of 
reduced overpo ten t ia l - the  one corresponding to 

% = 0.5AE and the other corresponding to % = 
0.9AE. The significant difference in the two relation- 
ships is due to the different times of the appearance of 
the zones. Thus the zone corresponding to % = 0.5 AE 
arises after time t* -- 4.23 x 10 -2 s from the cluster 
formation at t = 0. Since the time t* is well after the 
inflection point of  the i(t) relationship (tr = 5.51 x 
10 .3 s) the function vo = dQ/dt ~ di/dT(Equafion 40) 
decreases monotonically. The zone corresponding to 
% = 0.9 AEarises at time t* = 8.95 x l0 -4 S and its 
rate of spread displays a maximum at t = tf. The 
quantity V~ (Fig. 1 I) increases with time from zero (at 
t = 0) to the constant value V~,~ = [SrcO(~')vmfkoAE/ 
ze] at t ~ oo. The corresponding zone growth rate 

V o = 4~0 d~ 4rc di 
d--t = [2~fk~(AE - -  17e)] 2 i ~ (47) 

are also increasing functions of  time in the interval 
(0 to 7 x 10 _2 s). However, a simple inspection of 
Equation 47, based on the approximate analytical 
solutions for i (Equations 19 and 25), shows that V 0 

3 and tends to displays a maximum at time tm(s,j) = ~-tf(~,j) 
the constant value V0, ~ = nfkoAE3vm/zer - 
~7~) 2 at t --* oe when the clusters grow under the con- 
ditions of  complete 'ohmic' control. 

The results obtained in this section illustrate the 
complicated kinetics of  spread of  the zones of  reduced 
overpotential. In particular, the examination of the 
quantity v o indicates that the simple power law % -,~ r ~ 
suggested by Markov [16] could hardly be applied to 
the initial stage of the phase formation. This also 
makes questionable the interpretation of the experi- 
mental results carried out in [17-20]. 

3. Conclusions 

The theoretical analysis performed in this study 
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unambiguously shows that under certain experimental 
conditions the ohmic drop may play a significant role 
in the electrodeposition process and this should be 
borne in mind even when interpreting the growth kin- 
etics of very small clusters. On increasing the cluster 
size the ohmic effects become more and more import- 
ant, thus leading to the establishment of  a complete 
ohmic control of the growth process. The last limiting 
case was first considered by Scheludko and Bliznakov 
[2]. In a recent paper, Deutscher and Fletcher [21] 
comment upon the theory developed in [2], arguing 
that 'it fails to describe real data',  but is expected to 
hold 'only in the most extreme cases'. It is our opinion 
'chat this criticism is somewhat exaggerated. On 
one hand, the exchange current densities (10 -3 tO 
10 -~s Acm-2) ,  which the authors of  [21] use to esti- 
mate the ion transfer resistance R~,,, are rather low and 
reflect by no means the vast majority of  the 'metal-  
metal ion' reactions. Much higher values of  i0 were 
JFound for many electrochemical systems quite a long 
time ago. Thus for the Hg/Hg 2+ electrode Gerischer 
[22] has found i 0 = 5Acre  -2 (see also [23, 241), 
whereas for the Ag/Ag + electrode i0 was found to vary 
from 0.15 to 4.SAcra -2 [25] and from 1 to 7Acre  -2 
[26] (see also [27]). Relatively high values for i0 
( ~  0.1 A cm -2) were also reported for many amalgam 
electrodes [28] and much higher exchange current den- 
sities ( ~  500 Acm -2) were measured in fused salts [4]. 
All these data show that the ion transfer resistance, 
R~,t, which is generally inversely proportional to i0, 
does not always have a very high value and could be 

~E 
o o 

r~  r 

R.O., r Ri, t 

Fig. 12. Equivalent scheme of the electrochemical circuit 'counter 
e!ectrode-electrolyte-r-sized cluster'. 

u 

' o  

3 

1 

0 Fig. 11. Time dependence of the growth rates E; (�9 
and V 0 (o) for ~/0 = 0.SAE and (e) for q0 = 0.gz%E 
(right-hand-side ordinate). 

commensurate with the ohmic resistance Ra,r. On the 
other hand it is well known that the expression which 
Deutscher and Fletcher use to evaluate the ion tran- 
sfer resistance (Ri, t = v k T / i o z e  ) and to compare it 
with Ra,, holds only for low overpotentials, ~/, and/or 
high temperatures, T, when z e ~ l / k T  ~ 1. In our 
opinion the correct comparison between Ra., and R~,, 
(measured in ~ not in f~ cm 2) should be carried out in 
the following way. 

The equivalent scheme of  the electrochemical circuit 
'counter electrode-electrolyte-r-sized growing duster '  
is shown in Fig. 12, According to this scheme the 
growth current, i, is given by 

AE 
i = (48) 

Hence for R~,, 

AE 1 
Ri,~ = i 2n fk re  (49) 

The resistances Ri,~, Ra,, and the total resistance R:: = 
Rit + Rn,r are calculated as functions of  the cluster 
radius r and are shown in double logarithmic coor- 
dinates in Fig. 13. As is seen, for small clusters the 
total resistance (line 1) is almost equal to the ion 
transfer resistance Ri, t (line 2). For  sufficiently large 
clusters Rv is close to Rn.r (line 3). The exact lowest and 
highest calculated values of Ra,,, R,,, and RT are: 

f o r r  = 2 x 10 -6cm, i =  4.7t x 10 -gA 

Ri, t = 2.08 x 107 ~, Rn, r = 3.98 x l0 s.Q, 

RT = 2.12 x 107~ 

for r = 6.9 x 10 -3cm, i----- 8.09 • 10 4A 

Ri., = 8.18~, Rn,r = 1.15 x 10zf~, 

RT = 1.2 X 102f~ 

These numerical estimates show that in the advanced 
stage of  the deposition process the growth proceeds 
under complete ohmic control. For smaller clusters, 
however, both ohmic and ion transfer limitations have 
to be taken into consideration. 
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